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Abstract

Ranking the tens of thousands of retrieved webpages for a user query on a Web
search engine such that the most informative webpages are on the top is a key infor-

mation retrieval technology. A popular ranking algorithm is the HITS algorithm of
Kleinberg. It explores the reinforcing interplay between authority and hub webpages

on a particular topic by taking into account the structure of the web graphs formed
by the hyperlinks between the webpages. In this paper, we give a detailed analysis of

the HITS algorithm through a unique combination of probabilistic analysis and matrix
algebra. In particular, we show that to first order approximation, the ranking given
by the HITS algorithm is the same as the ranking obtained by counting inbound and

outbound hyperlinks. Using web graphs of different sizes, we also provide experimental
results to illustrate the analysis.

1 Introduction

The rapidly growing World Wide Web now contains more than two billion webpages of text,
images and other multimedia information. While this vast amount of information has the
potential to benefit all aspects of our society, finding the relevant webpages to satisfy a user’s
information need still remains an important and challenging task. Many commercial search
engines have been developed and used by people all over the world. However, the relevancy
of webpages returned by search engine is still lacking, and further research and development
are needed to make search engine more effective as a ubiquitous information-seeking tool.

A distinct feature of the Web is the proliferation of hyperlinks between webpages which
allow a user to surf from one webpage to another with a simple click. We can model the
Web as a directed graph with the webpages as the nodes and the hyperlinks as the directed
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Figure 1: Left: hub webpage pi has many out-bound hyperlinks. Right: authority webpage
pi has many in-bound hyperlinks.

edges. This hyperlink graph contains useful information: If webpage pi has a link pointing
to webpage pj , it usually indicates that the creator of pi considers pj containing relevant
information for pi. Such unbiased opinions and knowledge are therefore registered in the
form of hyperlinks. Exploring the information stored in the link graphs to infer certain
relationships is an emerging field of link analysis. Recent introductory surveys of web link
analysis can be found in [19, 21].

A valuable and informative webpage is usually pointed to by a large number of hyperlinks,
i.e., it has a large indegree (see Fig. 1). Such a webpage is called an authority [22]. A webpage
that points to many authority webpages is itself a useful resource and is called a hub. A hub
usually has a large outdegree. In the context of literature citation, a hub is a review paper
which cites many original papers, while an authority is an original seminal paper which is
cited by many papers.

The Hypertext Induced Topic Selection (HITS) algorithm of Kleinberg [22] improves on
the basic notions of hubs and authorities. HITS assigns importance scores to hubs and
authorities, and computes them in a mutually reinforcing way: a good authority must be
pointed to by several good hubs while a good hub must point to several good authorities.
Further improvements and extensions of HITS were developed in [16, 7, 11, 24, 8, 12, 26, 1, 4].
The goal of this paper is to give a detailed analysis of the HITS algorithm, focusing on the
role of indegrees and outdegrees.

2 The HITS algorithm

The HITS algorithm is applied to a set of webpages generated from the search engine result
set for a query. Specifically, a subset of the top-ranked webpages together with their one-
hop-away neighbors are used for analysis [22]. In the HITS algorithm, each webpage pi in
the set is assigned a hub score yi and an authority score xi. The intuition is that a good
authority is pointed to by many good hubs and a good hub points to many good authorities.
This mutually reinforcing relationship is represented as,

x′
i =

∑

j:eji∈E

yj, y′i =
∑

j:eij∈E

xj; xi = x′
i/||x

′||, yi = y′i/||y
′||. (1)

Final hub and authority scores are obtained by iteratively solving Eq.(1). Ordering webpages
in decreasing order according to their scores, one obtains the rankings of hubs and authorities.

The set of webpages form a directed graph G = (V,E), where webpage pi is a node in V
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Figure 2: Left: webpages pi, pj are co-cited by webpage pk. Right: webpages pi, pj co-
reference webpage pk.

and hyperlink eij is an edge in E. The adjacency matrix L of the graph is defined as: Lij =
1 if eij ∈ E, 0 otherwise. Authority scores on all n nodes form a vector x = (x1, · · · , xn)T

and hub scores form a vector y = (y1, · · · , yn)
T . Eq.(1) can be cast into

x = LT y, y = Lx.

Let x(t), y(t) denote hub and authority scores at the tth iteration. The iteration processes to
reach the final solutions are

cx(t+1) = LTLx(t), cy(t+1) = LLT y(t) (2)

starting with x(0) = y(0) = e ≡ (1, · · · , 1)T , where c is a normalization factor so that ||x|| =
||y|| = 1. Since LTL determines the authority ranking, we call LTL the authority matrix.
Similar, we call LLT the hub matrix. The final solution x∗, y∗ are the respective principal
eigenvectors of the symmetric positive definite matrices LTL and LLT : LTLx∗ = λx∗ and
LLT y∗ = λy∗, i.e., the singular value decomposition (SVD) [17] of L.

3 Authority and co-citation, hub and co-reference

The hub and authority matrices have interesting connection [22] to two important concepts,
co-citation and co-reference in the fields of citation analysis and bibliometrics, which are
fundamental metrics to characterize the similarity between two documents [27, 20]. Here we
discuss the relationship in further details and emphasize the important role of indegrees and
outdegrees.

If two distinct webpages pi, pj are co-cited by many other webpages, as in Fig. 2, pi, pj are
likely to be related in some way. Thus co-citation is a measure of similarity. It is defined as
the number of webpages that co-cite pi, pj . The co-citation between pi, pj can be calculated
as Cij =

∑

k LkiLkj = (LTL)ij . The self-citation Cii is not defined and is usually set to Cii = 0.
Also, Cij = Cji. The indegree of webpage pi is given by di =

∑

k Lki =
∑

k LkiLki = (LTL)ii,
since Lki = 0 or 1. Let D be the diagonal matrix of indegrees, D = diag(d1, d2, · · · , dn), the
link structure of LTL is

LTL = D + C. (3)

Thus the authority matrix is the sum of co-citation and indegree. One also sees that

max(0, di + dk − n) ≤ Cik ≤ min(di, dk). (4)
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Thus Cik = 0 if di = 0 or dk = 0. If di = 0, the ith row of LTL contains all zeros. From
Eq.(2), its authority score must be zero.

As shown in Fig.2, the fact that two distinct webpages pi, pj co-reference many other
webpages indicates that pi, pj have certain commonality. Co-reference (bibliometric coupling)
measures the similarity between webpages. Let R = (Rij) denote the co-reference, where Rij

is defined to be the number of webpages co-referenced by pi, pj, and calculated as (see Fig.
2), Rij =

∑

k LikLjk = (LLT )ij. The self-reference Rii is not defined, and is set to Rii = 0.
The outdegree of node pi is oi =

∑

k Lik =
∑

k LikLik = (LLT )ii. Let O = diag(o1, o2, · · · , on),
we have

LLT = O + R. (5)

Thus hub matrix is the sum of co-reference and outdegree. We also have the inequality

max(0, oi + ok − n) ≤ Rik ≤ min(oi, ok). (6)

Clearly Rik = 0 if oi = 0 or ok = 0. If oi = 0 , the ith row of LLT contains all zeros; from
Eq.(2), its hub score must be zero.

It is interesting to note the duality relationship between hubs and authorities, and the
duality between co-citations and co-references. This is similar to the duality between docu-
ments and words in information retrieval (IR). The fact that hub and authority scores are
embedded in SVD resembles the latent semantic indexing [13, 6] in IR.

4 Probabilistic analysis

We analyze the structures of the authority and hub matrices in more details. Eq.(3) suggests
an interesting and useful observation on the relationship of co-citations and indegree: in
general, nodes with large indegrees will have large co-citations with other nodes, simply
because they have more in-links. Conversely, large co-citations are directly related to the
large indegrees of the nodes involved.

These intuitions can be made more precise by assuming the web graph as a fixed degree
sequence random graph and using probablistic analysis on the expected value of co-citation
and co-reference. This is motivated by the result of Aiello et al [2] where it was proposed
that the web can be better characterized by a fixed degree sequence random graph, in which
node degrees {d1, · · · , dn} are first given, and edges are randomly distributed between nodes
subject to constraints of node degrees. We have the following:

Proposition 1. For fixed degree sequence random graphs, the expected value of co-citation
is given by

〈Cik〉 = didk/(n − 1). (7)

This is consistent with Eq.(4).

Proof. We prove this relation assuming di ≥ dk. There are at most dk nonzero terms in
Cij =

∑

k LkiLkj, which is the inner product of ith and kth columns of adjacency matrix L.
Consider the case where qth row in kth column is one. The probability that the corresponding
position in ith column being 1 is P (Lqi = 1) = Cdi−1

n−2 /Cdi
n−1 = di/(n − 1). Here Cdi

n−1 is the
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total number of possible patterns for di ones in ith column, and Cdi−1
n−2 is the total number of

possible patterns given that there is a one at row q. Thus 〈Cik〉 =
∑

q〈LqiLqk〉 =
∑dk

q 〈Lqi〉 =
dk · P (Lqi = 1), we have Eq.(7). u–

From these analyses, we see that node i with large indegree di tend to have large co-
citations with other nodes. If di > dj, we have 〈Cik〉 > 〈Cjk〉, ∀k, k 6= i, k 6= j. Thus
Cik is more likely to be larger than Cjk, but not necessarily true in every case. We say that
Cik > Cjk on average.

The same analysis can be applied to outdegree and co-reference for hub matrix LLT .
We have

〈Rik〉 = oiok/(n − 1). (8)

This is consistent with Eq.(6).

There are several other models for web graph topology and indegree and outdegree dis-
tributions such as the webpage copying model [23] and the preferential attachment model
[5]. In those more complex models, the degree distributions evolve dynamically; at any given
time, however, the web graph is probably similar to the fixed degree random graph model
and Eqs.(7,8) hold approximately.

5 Average case analysis

With the expectation value of co-citations given in Eq.(7) and the relationship Eq.(3) between
authorities and co-citations, we can perform an analysis for the average case in which the
elements of the authority matrix are replaced by their average values. In this average case,
the final ranking scores of HITS algorithm can be solved in closed form, providing much
insights into the HITS algorithm.

To prove the results of the average case requires the spectral decomposition of a matrix
which is the sum of a diagonal matrix and a rank-one matrix: A ≡ D + ccT . The decom-
position for this type of matrices is given in Theorem 8.5.3 in Golub and van Loan [17]. In
Theorem 8.5.3, it requires that diagonal entries of D are all distinct. However, in our case,
many entries are identical. Thus we generalize Theorem 8.5.3 to this more general case.

Theorem 1. Spectral decomposition of the n-by-n matrix A ≡ D + ccT . Let D be a
diagonal matrix of the block form

D = diag(τ1I1, . . . , τ`I`), (9)

where Ik, k = 1, · · · , `, is the identity matrix of size nk, τk’s are ` distinct values

τ1 > τ2 > · · · > τ`, (10)

and the block sizes nk’s satisfy n1 + · · ·+n` = n. Let c be a column vector of the block form
c = [cT

1 , . . . , cT
` ]T with ck being a column vector of size nk, and ck 6= 0. Then eigenvalues of

A ≡ D + ccT are given by

τ̂1 > τ1 = . . . = τ1
︸ ︷︷ ︸

n1−1

> τ̂2 > τ2 = . . . = τ2
︸ ︷︷ ︸

n2−1

> · · · > τ̂` > τ` = . . . = τ`
︸ ︷︷ ︸

n`−1

. (11)
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The eigenvector of A corresponds to the eigenvalue τ̂k is given by

(

cT
1

τ̂k − τ1
,

cT
2

τ̂k − τ2
, . . . ,

cT
`

τ̂k − τ`

)T

. (12)

The eigenvector corresponds to the eigenvalue τk is of the form

(0 · · · 0,uT
k , 0 · · · 0)T (13)

where uk is an arbitrary vector of size nk satisfying cT
k uk = 0.

Proof. Since ck 6= 0, we can find exactly (nk − 1) mutually orthogonal uk’s satisfying
cT

k uk = 0; The corresponding (nk − 1) vectors of the form in Eq.(13) form an orthonormal
basis for the invariant subspace of A with eigenvalue τk. In total we have (n1−1)+· · ·+(n`−1)
eigenvectors of this type with corresponding eigenvalues τ1, . . . , τ` in Eq.(11).

Now consider the `-by-` matrix Â ≡ diag(τ1, τ2, . . . , τ`)+ ĉĉT with ĉ = (‖c1‖, . . . , ‖c`‖)
T .

It follows from Eq.(10) and Theorem 8.5.3 that Â has ` distinct eigenvalues, τ̂1, · · · , τ̂`,
satisfying

τ̂1 > τ1 > τ̂2 > τ2 > · · · > τ̂` > τ`,

and the eigenvector of Â corresponding to τ̂k is given by

(

‖c1‖

τ̂k − τ1
,
‖c2‖

τ̂k − τ2
, . . . ,

‖c`‖

τ̂k − τ`

)T

. (14)

For k = 1, . . . , `, let Uk be an orthonormal matrix (coordinate rotation) such that

UT
k ck = ‖ck‖zk ≡ c̃k.

where zk = (1, 0 · · · 0)T . Define U = diag(U1, . . . , U`), and c̃ = [c̃T
1 , . . . , c̃T

` ]T . Then, UT AU =
D + c̃c̃T . By construction, the block structure of D + c̃c̃T matches that of Â. Clearly, if
Eq.(14) is the eigenvector of Â with the eigenvalue τ̂k, then

(

‖c1‖z
T
1

τ̂k − τ1

,
‖c2‖z

T
2

τ̂k − τ2

, . . . ,
‖c`‖z

T
`

τ̂k − τ`

)T

(15)

is an eigenvector of D + c̃c̃T = UT AU with the same eigenvalue. To get the corresponding
eigenvector of A, we multply U from the left of Eq.(15). Noting that Ukzk = ck/‖ck‖, this
gives the eigenvector of Eq.(12). u–

Suppose the largest m (m > 1) diagonal entries of D are distinct. Then the m corre-
sponding eigenvectors of D + ccT are of the form in Eq.(12). Let D = diag(τ1, τ2, . . . , τn)
and c = (c1, c2, . . . , cn)T , where τi’s are in nonincreasing order, in contrast with the block
form of Eqs.(9,10). Let k ≤ m. The kth eigenvector of D + ccT can be written as

(
c1

τ̂k − τ1
,

c2

τ̂k − τ2
, . . . ,

cn

τ̂k − τn

)T

. (16)

This is the case used in the average case analysis of HITS below.

We now turn to the following main result of this paper:
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Theorem 2. Given a fixed degree sequence random graph, assume (a) the largest m (m > 1)
indegrees are distinct, d1 > . . . > dm > dm+1 ≥ dm+2 · · · ≥ dn, and (b)

di + dj < n− 1, ∀ i, j. (17)

The authority matrix LT L for the average case has the largest m eigenvalues λi, i = 1, . . . ,m,
with the following interleave relation,

λ1 > h1 > λ2 > h2 > · · · > λm > hm, (18)

and the corresponding eigenvectors

uk = (
d1

λk − h1
,

d2

λk − h2
, . . . ,

dn

λk − hn

)T , k = 1, · · · ,m. (19)

Here hi ≡ di − d2
i /(n − 1). Analogous results hold for hub matrix LLT .

Proof. Using Eq.(7), we have the average case authority matrix

< LT L >=< D > + < C >= diag(h1, h2, . . . , hn) + ddT /(n − 1),

where d = (d1, d2, · · · , dn)
T . Now < LT L > is the sum of a diagonal matrix and a rank-one

matrix. To apply Theorem 1, it requires that h1 > h2 > · · · > hm > hm+1 ≥ · · · ≥ hn. This
is satisfied, because we have

hi − hj = (di − dj)[1− (di + dj)/(n − 1)].

For any i < j, the second factor is positive because of Eq.(17). Since webpages are indexed
according to their indegrees, the first factor is positive for i ≤ m, otherwise it is nonnegative.
Thus the ordering requirement is satisfied. Eqs.(19, 18) now follow from Theorem 1 directly.
u–

Note that condition (b) of Theorem 2 (cf. Eq.(17)) is satisfied if di < (n − 1)/2 for all
i, which holds for most webgraphs: the indegree of a node is less than half of the total size.
Also, indegrees of a web graph typically follow a power-law distribution [10]: di ∝ 1/i2.
They drop off rapidly. The first few largest indegrees are usually distinct, i.e., condition (a)
of Theorem 2 is satisfied.

Given Eq.(7), one can also perform a first order perturbation analysis and obtain eigen-
vectors very similar to those in Eq.(19) (details omitted here).

These principal eigenvectors of < LT L > behave fairly regularly, as illustrated in Figure
3. u1 is always positive. For u2, the first node is negative, turning positive from the second
node. For u3, the first 2 nodes are negative, turning positive from the third node and so on.

6 Properties of HITS algorithm

Several interesting results follow directly from Theorem 2:

1. Webpage ordering. The authority ranking is, on average, identical to the ranking
according to webpage indegrees. To see this, we have the following:
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Figure 3: Eigenvectors of Eq.(19).

Corollary 2.1. Elements of the principal eigenvector u1 are nonincreasing, assuming
webpages are indexed such that their indegrees are in nonincreasing order.
Proof. From Theorem 2, we have, for any i < j,

u1(i)− u1(j) =
di

λ1 − hi

−
dj

λ1 − hj

=
(di − dj)[λ1 − didj/(n− 1)]

(λ1 − hi)(λ1 − hj)
≥ 0,

because λ1 − didj/(n − 1) > hi − didj/(n − 1) = di(1 − (di + dj)/(n − 1)) > 0, using
Eq.(17), and (λ1 − hi)(λ1 − hj) is positive. u–
From this, we conclude that to the extent that the fixed degree sequence random graph
approximate the web, ranking webpages by their authority scores is the same as ranking
by their indegrees. Analogous results hold for hub ranking. These indicate that the
duality relationship embedded in mutual reinforcement between hubs and authorities
are manifested by their indegree and outdegrees.

2. Uniqueness. If d1 is larger than d2, then the principal eigenvector of LTL is unique,
and is quite different from the second principal eigenvector (see Figure 3).

3. Convergence. The convergence for HITS can be rather fast: (1) the starting vector
x(0) = (1, · · · , 1)T has large overlap with principal eigenvector u1, but little overlap
with other principal eigenvectors uk, k = 2, · · · ,m, because uk contains negative nodal
values (see Figure 3). (2) In the iterations to compute u1, the convergence rate depends
on λ2/λ1 ' h1/h2 ' d1/d2 ' (1/2)2 = 1/4, using Eq.(18) and the fact that indegrees
follow power-law distribution [10]: di ∝ 1/i2. Thus the iteration converges rapidly.
Typically 5-10 iterations are sufficient.

4. Web communities. HITS algorithm has been used to identify multiple web commu-
nities using different eigenvectors [22, 16]. The principal eigenvector defines a dominant
web community. Each non-principal eigenvector uk defines two communities, one with
non-negative values {i|uk(i) ≥ 0} and the other with negative values {i|uk(i) < 0}.
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From the pattern of eigenvectors in our solutions (see Fig. 3), the positive region of
different eigenvectors overlap substantially. Thus the communities of positives regions
nest with each other; so do communities of negative regions. Therefore, we believe this
method to identify multiple communities is less effective. This difficulty is also noticed
in practical applications [7]. A number of web community discovery algorithms are
being developed, e.g., trawling to find bipartite cores [23], network maximum flow [15],
and graph-clustering [18]. One advantage of these methods is that weak communities
(topics) can be separated from dominant communities and thus identified. Without
explicit community discovery, webpages of weak topics are typically ranked low by
HITS (and by indegree ranking) and are often missed.

7 Experimental results

Experiment 1. This dateset was supplied by the Internet Archive [3] and was extracted
from a crawl performed over 1998-1999. It has 4,906,214 websites and represents a site-
level graph of the Web. The principal eigenvectors were obtained using PARPACK [25] on
NERSC’s IBM SP computer. Table 1. below lists the top 20 authorities, ranked by HITS
(1st column) and by indegree (2nd column).

Table 1. Authority Ranking for Internet Archive.

Hits Indgr URL

1 4 www.yahoo.com

2 3 www.geocities.com

3 1 www.microsoft.com

4 6 members.aol.com

5 2 home.netscape.com

6 10 www.excite.com

7 11 www.lycos.com

8 9 members.tripod.com

9 15 ourworld.compuserve.com

10 5 www.netscape.com

11 20 www.cnn.com

12 28 www.webcom.com

13 33 sunsite.unc.edu

14 7 www.adobe.com

15 35 www.teleport.com

16 17 www.altavista.digital.com

17 25 www.w3.org

18 19 www.infoseek.com

19 18 www.angelfire.com

20 21 www.hotbot.com

... .. ......

111 13 www.linkexchange.com

137 14 ad.linkexchange.com

174 17 member.linkexchange.com

In general, one see that the HITS ranking and indegree rank are highly correlated, as
expected from our analytical results. For these reasons, we consider as normal those webpages
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highly ranked by HITS that also have high indegree. There are two types of webpages that
deviate from this general pattern and are interesting in theoretical analysis : (a) those
highly ranked authority webpages by HITS, but with relatively smaller indegrees, and (b)
those webpages with large indegrees, but ranked low by HITS. These webpages would have
been incorrectly ranked if we simply count indegrees, thus represents the net improvements
brought by HITS algorithm.

As for type (b) webpages, we note that three websites www.linkexchange.com,
ad.linkexchange.com, and member.linkexchange.com are ranked high by indegree (rank 13,
14, 16 respectively). They are ranked low by HITS (rank 111, 137, 174 respectively). All
three sites have very large indegrees, but also very small outdegrees; they are all sinks: many
sites point to them, but they do not point to anywhere. The mutually reinforcing nature
of the HITS algorithm ranked them low, because there are no good hubs pointing to them.
These anomalies indicate the effectiveness of the HITS algorithm.

As for type (a) webpages, we mention two websites: (1) sunsite.unc.edu, which is ranked
13 in HITS, but is ranked 33 by indegree. This site holds many software repositories, but
few out-bound links. Its higher HITS ranking is reasonable because more top sites such as
microsoft point to it. (2) www.teleport.com, which is ranked 15 by HITS, but is ranked 35
by indegree. This site has a large number of out-links, and more top sites point to it.

Table 2. Hub Ranking for Internet Archive.

Hits Outdgr URL

1 4 www.yahoo.com.au

2 5 www.yahoo.co.uk

3 3 dir.yahoo.com

4 7 www.yahoo.com.sg

5 8 www.yahoo.ca

6 9 www2.aunz.yahoo.com

7 1 members.aol.com

8 2 www.geocities.com

9 6 members.tripod.com

10 10 ispc.yahoo.co.uk

11 11 y3.yahoo.ca

12 12 y4.yahoo.ca

13 13 www6.yahoo.co.uk

14 16 tv.yahoo.com.au

15 17 www.yahoo.co.nz

16 19 soccer.yahoo.com.au

17 18 www.yahoo.com.my

18 21 www.aunz.yahoo.com

19 20 203.103.130.22

20 23 206.222.66.43

Table 2. lists the top hubs, ranked by HITS (1st column) and by outdegree (2nd col-
umn). Here one see very high correlation between the HITS ranking and outdegree ranking,
indicating that our approximate analytical results are fairly accurate in this case.

We note, however, that the distinction between hubs and authorities are sometime
blurred. Good examples are members.aol.com, www.geocities.com, etc. they are ranked
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very high in both authority list and hub list. Although they are not authoritative on any
particular subject, careful content selection and organization on these websites make them
valuable, almost like authoritative figures. This also happens in the bibliometrics domain,
where some good survey papers/books (hubs) become as valuable or important as the orig-
inal seminar papers (authorities), because these good surveys are written by authoritative
people in the field, and they provide the additional insights beyond original seminar papers.

Experiment 2. This dataset is about the topic Running which contains a total of 13152
webpages. This dataset is a sub-category of a larger category Fitness which is obtained from
the Open Directory Project(ODP) www.dmoz.org. Under each category of the ODP, there
is a relatively focused topic. The data file from the ODP contains the hierarchical structure
of these webpages. We form the link graph of sub-category Running by extracting from the
Fitness linkgraph the document IDs of those webpages under Running sub-category.

Table 3 below lists the top 20 authorities, ranked either by HITS (1st column) or by
indegree (2nd column). Here the correlation between the HITS ranking and the indegree
ranking is high. If we organize the results in top 10, second top 10, etc., as done by many
internet search engines, the matches within top 10, and second top 10 are fairly close.

Table 3. Authority Ranking for Running

Hits Indgr URL

1 2 www.runnersworld.com/

2 5 sunsite.unc.edu/drears/running/running.html

3 4 www.usatf.org/

4 1 www.coolrunning.com/

5 6 www.clark.net/pub/pribut/spsport.html

6 8 www.runningnetwork.com/

7 9 www.iaaf.org/

8 14 www.sirius.ca/running.html

9 12 www.wimsey.com/~dblaikie/

10 15 www.kicksports.com/

11 7 www.nyrrc.org/

12 18 www.usaldr.org/

13 20 www.halhigdon.com/

14 25 www.ontherun.com/

15 10 www.runningroom.com/

16 23 www.webrunner.com/webrun/running/running.html

17 22 www.doitsports.com/

18 21 www.arfa.org/

19 19 www.adidas.com/

20 11 www.uta.fi/~csmipe/sport/

Table 4 lists the top hubs, ranked by HITS (1st column) and by outdegree (2nd column).
For the hub ranking, correlation between the HITS ranking and the indegree ranking is not
as high as for the authority, but still apparent, especially if we look at top 3.
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Table 4. Hub Ranking for Running.

Hits Outdgr URL

1 3 www.fix.net/~doogie/links.html

2 1 www.gbtc.org/whatelse.html

3 4 www.usateamsports.com/running.htm

4 15 home1.gte.net/gregtrrc/links.htm

5 17 www.afn.org/~ftc/othlinks.html

6 19 www.grainnet.com/rdraces/websites.html

7 14 www.runner.org/links.htm

8 20 directory.netscape.com/Health/Fitness/Running

9 21 www.dmoz.org/Health/Fitness/Running/

10 20 directorysearch.mozilla.org/Health/Fitness/Running/

11 15 dmoz.org/Health/Fitness/Running

12 25 www.cajuncup.com/links.htm

13 11 www.rrm.com/sites.html

14 18 www.doitsports.com/guides/running.html

15 20 www.webcrawler.com/kids_and_family/hobbies/outdoors/running

16 20 magellan.mckinley.com/lifestyle/hobbies_and_recreation/outdoors/...

17 28 www.webfanatix.com/running_resources.htm

18 28 www.webfanatix.com/_vti_bin/shtml.exe/running_resources.htm/map

19 25 www.isp.nwu.edu/~brianw/running.html

20 23 www.geocities.com/HotSprings/Resort/5457/

8 Discussions

We analyzed the HITS algorithm and obtained the solutions assuming that webgraphs are
fixed degree sequence random graphs. From this, several important characteristics of the
HITS algorithm are explained. One result is that, on average, the HITS authority ranking is
the same as the ranking by indegree. Experiments on several web groups support this result.

Besides HITS, another popular ranking algorithm is PageRank [9] used in search engine
Google. PageRank explores the link graph characteristics, but uses random surf model with
hyperlink normalization. (HITS instead focuses on mutual reinforcement between authorities
and hubs.) These main features of HITS and PageRank were generalized and combined into a
unified framework in which one can show that ranking by PageRank is also highly correlated
with ranking by indegree [14].

The key motivation of mutual reinforcement in HITS is that a “good” hub must point to
several “good” authorities while a “good” authority must be pointed to by several “good”
hubs. The key motivation of PageRank is that an “informative” webpage must point to and
be pointed to by other informative webpages. But for a webpage to become “informative” in
the first place, it must have the quality to attract certain amount of in-bound links, or votes
from other webpages. The dynamics of the web growth process [23, 5] has the snowball effect
which gradually leads to the high correlation between “informativeness” and indegree. Thus
mutual reinforcement and the high correlation between HITS ranking and indegree ranking
describe different aspects of the web growth process: one is from relationship point of view,
the other from statistical point of view.
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